4,184 research outputs found

    Out of the frying pan: a young pulsar with a long radio trail emerging from SNR G315.9-0.0

    Full text link
    The faint radio supernova remnant SNR G315.9-0.0 is notable for a long and thin trail that extends outward perpendicular from the edge of its approximately circular shell. In a search with the Parkes telescope we have found a young and energetic pulsar that is located at the tip of this collimated linear structure. PSR J1437-5959 has period P = 61 ms, characteristic age tau_c = 114 kyr, and spin-down luminosity dE/dt = 1.4e36 erg/s. It is very faint, with a flux density at 1.4 GHz of about 75 uJy. From its dispersion measure of 549 pc/cc, we infer d ~ 8 kpc. At this distance and for an age comparable to tau_c, the implied pulsar velocity in the plane of the sky is V_t = 300 km/s for a birth at the center of the SNR, although it is possible that the SNR/pulsar system is younger than tau_c and that V_t > 300 km/s. The highly collimated linear feature is evidently the pulsar wind trail left from the supersonic passage of PSR J1437-5959 through the interstellar medium surrounding SNR G315.9-0.0.Comment: accepted for publication in ApJ Letter

    A Proper Motion for the Pulsar Wind Nebula G359.23-0.82, "the Mouse," Associated with the Energetic Radio Pulsar J1747-2958

    Full text link
    The "Mouse" (PWN G359.23-0.82) is a spectacular bow shock pulsar wind nebula, powered by the radio pulsar J1747-2958. The pulsar and its nebula are presumed to have a high space velocity, but their proper motions have not been directly measured. Here we present 8.5 GHz interferometric observations of the Mouse nebula with the Very Large Array, spanning a time baseline of 12 yr. We measure eastward proper motion for PWN G359.23-0.82 (and hence indirectly for PSR J1747-2958) of 12.9+/-1.8 mas/yr, which at an assumed distance of 5 kpc corresponds to a transverse space velocity of 306+/-43 km/s. Considering pressure balance at the apex of the bow shock, we calculate an in situ hydrogen number density of approximately 1.0(-0.2)(+0.4) cm^(-3) for the interstellar medium through which the system is traveling. A lower age limit for PSR J1747-2958 of 163(-20)(+28) kyr is calculated by considering its potential birth site. The large discrepancy with the pulsar's spin-down age of 25 kyr is possibly explained by surface dipole magnetic field growth on a timescale ~15 kyr, suggesting possible future evolution of PSR J1747-2958 to a different class of neutron star. We also argue that the adjacent supernova remnant G359.1-0.5 is not physically associated with the Mouse system but is rather an unrelated object along the line of sight.Comment: 8 pages, 4 figures, emulateapj format. Accepted for publication in The Astrophysical Journa

    Factors that affect the negotiation process of SMES in trade shows

    Get PDF
    The objective of this research is to identify the factors that affect the negotiation process of SMEs in trade shows, which represent one of the most important export promotion instruments. Semi-structured interviews were carried out with Peruvians who participated in negotiations. A conceptual model was developed, which integrates the various factors identified in the literature such as (1) background factors, (2) strategic factors, (3) cultural factors, (4) negotiator factors, and (5) psychological factors, in order to confirm their impact on the negotiation process. The results revealed factors that had not been previously considered in the literature, providing a valuable insight for a future study. This research seeks to maximize the effectiveness of negotiations at trade shows, which impact the performance and export activity of exhibiting firms, allowing better export promotion policies to be developed

    Using CO line ratios to trace the physical properties of molecular clouds

    Get PDF
    The carbon monoxide (CO) rotational transition lines are the most common tracers of molecular gas within giant molecular clouds (MCs). We study the ratio (R21/10R_{2-1/1-0}) between CO's first two emission lines and examine what information it provides about the physical properties of the cloud. To study R21/10R_{2-1/1-0} we perform smooth particle hydrodynamic simulations with time dependent chemistry (using GADGET-2), along with post-process radiative transfer calculations on an adaptive grid (using RADMC-3D) to create synthetic emission maps of a MC. R21/10R_{2-1/1-0} has a bimodal distribution that is a consequence of the excitation properties of each line, given that J=1J=1 reaches local thermal equilibrium (LTE) while J=2J=2 is still sub-thermally excited in the considered clouds. The bimodality of R21/10R_{2-1/1-0} serves as a tracer of the physical properties of different regions of the cloud and it helps constrain local temperatures, densities and opacities. Additionally this bimodal structure shows an important portion of the CO emission comes from diffuse regions of the cloud, suggesting that the commonly used conversion factor of R21/100.7R_{2-1/1-0}\sim 0.7 between both lines may need to be studied further.Comment: 10 pages, 8 figures, accepted to MNRA

    Chandra X-Ray Observations of Nineteen Millisecond Pulsars in the Globular Cluster 47 Tucanae

    Full text link
    We present spectral and long-timescale variability analyses of \textit{Chandra} ACIS-S observations of the 19 millisecond pulsars (MSPs) with precisely known positions in the globular cluster 47 Tucanae. The X-ray emission of the majority of these MSPs is well described by a thermal (blackbody or neutron star hydrogen atmosphere) spectrum with a temperature Teff(13)×106T_{\rm eff}\sim(1-3)\times10^6 K, emission radius Reff0.13R_{\rm eff}\sim0.1-3 km, and luminosity LX103031L_{X}\sim10^{30-31} ergs s1^{-1}. For several MSPs, there is indication that a second thermal component is required, similar to what is seen in some nearby field MSPs. The radio-eclipsing binary MSPs 47 Tuc J, O, and W show a significant non-thermal component, with photon index Γ11.5\Gamma\sim 1-1.5, which may originate in an shock formed due to interaction between the relativistic pulsar wind and matter from the stellar companion. We re-examine the X-ray--spindown luminosity relation (LXE˙L_{X}-\dot{E}) and find that due to the large uncertainties in both parameters the result is consistent with both the linear LXE˙L_{X}-\dot{E} relation and the flatter LXE˙0.5L_X\propto\dot{E}^{0.5} predicted by polar cap heating models. In terms of X-ray properties, we find no clear systematic differences between MSPs in globular clusters and in the field of the Galaxy.Comment: 13 pages, 6 figures, accepted for publication in the Astrophysical Journa

    A new test of conservation laws and Lorentz invariance in relativistic gravity

    Full text link
    General relativity predicts that energy and momentum conservation laws hold and that preferred frames do not exist. The parametrised post-Newtonian formalism (PPN) phenomenologically quantifies possible deviations from general relativity. The PPN parameter alpha_3 (which identically vanishes in general relativity) plays a dual role in that it is associated both with a violation of the momentum conservation law, and with the existence of a preferred frame. By considering the effects of alpha_3 neq 0 in certain binary pulsar systems, it is shown that alpha_3 < 2.2 x 10^-20 (90% CL). This limit improves on previous results by several orders of magnitude, and shows that pulsar tests of alpha_3 rank (together with Hughes-Drever-type tests of local Lorentz invariance) among the most precise null experiments of physics.Comment: Submitted to Classical Quantum Gravity, LaTeX, requires ioplppt.sty, no figure

    1E 1547.0-5408: a radio-emitting magnetar with a rotation period of 2 seconds

    Full text link
    The variable X-ray source 1E 1547.0-5408 was identified by Gelfand & Gaensler (2007) as a likely magnetar in G327.24-0.13, an apparent supernova remnant. No X-ray pulsations have been detected from it. Using the Parkes radio telescope, we discovered pulsations with period P = 2.069 s. Using the Australia Telescope Compact Array, we localized these to 1E 1547.0-5408. We measure dP/dt = (2.318+-0.005)e-11, which for a magnetic dipole rotating in vacuo gives a surface field strength of 2.2e14 G, a characteristic age of 1.4 kyr, and a spin-down luminosity of 1.0e35 ergs/s. Together with its X-ray characteristics, these rotational parameters of 1E 1547.0-5408 prove that it is a magnetar, only the second known to emit radio waves. The distance is ~9 kpc, derived from the dispersion measure of 830 pc/cc. The pulse profile at a frequency of 1.4 GHz is extremely broad and asymmetric due to multipath propagation in the ISM, as a result of which only approximately 75% of the total flux at 1.4 GHz is pulsed. At higher frequencies the profile is more symmetric and has FWHM = 0.12P. Unlike in normal radio pulsars, but in common with the other known radio-emitting magnetar, XTE J1810-197, the spectrum over 1.4-6.6 GHz is flat or rising, and we observe large, sudden changes in the pulse shape. In a contemporaneous Swift X-ray observation, 1E 1547.0-5408 was detected with record high flux, f_X(1-8 keV) ~ 5e-12 ergs/cm^2/s, 16 times the historic minimum. The pulsar was undetected in archival radio observations from 1998, implying a flux < 0.2 times the present level. Together with the transient behavior of XTE J1810-197, these results suggest that radio emission is triggered by X-ray outbursts of usually quiescent magnetars.Comment: Accepted for publication in ApJ Letter
    corecore